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Abstract
Hamiltonians linear in the momenta and yielding (in the classical context)
trajectories isochronous in configuration space are considered. It is shown that
their motions are completely periodic in phase space as well, with the same
common period as the orbits in configuration space. Moreover, it is shown
that for this particular class of Hamiltonians the semiclassical quantization
prescription is exact, so that to the isochronous character of their classical
dynamics there corresponds in the quantized context an equidistant spectrum,
for a broad range of ordering prescriptions, including non-symmetrical ones.
Examples illustrating these findings are presented.

PACS numbers: 02.30.Ik, 45.50.Jf, 03.65.Sq

1. Introduction

Recently much research has been devoted to the identification and investigation of ‘ω-modified’
autonomous dynamical systems which are isochronous, namely which feature an open (hence
fully dimensional) region in their phase space in which all their motions are completely
periodic (namely, periodic in all their degrees of freedom) with the same fixed period. The
‘ω-modified’ character of these systems reflects the fact that they are obtained by subjecting
unmodified autonomous systems to an appropriate change of dependent and independent
variables (generally referred to as ‘the trick’) featuring a real (for definiteness, positive)
parameter ω. This transformation reduces to the identity for ω = 0, but for ω > 0 it generally
yields an ω-modified autonomous dynamical system which is isochronous, typically with the
period

T = 2π

ω
(1)
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or some simple integer multiple of T. The generality of this approach is demonstrated by the
fairly broad class of autonomous dynamical systems to which it is applicable: the interested
reader is referred in this respect to the extended (even if incomplete) list of papers quoted in [1].

These investigations have been mainly (albeit not exclusively) focused on dynamical
systems interpretable as (classical, i.e. nonrelativistic and nonquantal) many-body problems
characterized by equations of motion of Newtonian type (‘acceleration proportional to
force’). Of particular interest have been Hamiltonian systems, in which these (second-order)
Newtonian equations of motion describing the time evolution in configuration space originate
from the standard (first-order) Hamiltonian equations describing the time evolution in phase
space. However, only in some rather special cases the ω-modified equations of motion obtained
in this manner—i.e., yielded by the application of ‘the trick’ to equations of motion obtained
in a Hamiltonian context—are themselves Hamiltonian, i.e. themselves obtainable starting
from an appropriate Hamiltonian (here we assume of course that one is not allowed to double
the number of canonical variables, since, by doing so, any dynamical system can be written
in Hamiltonian form: see remark 2.5 below). These special cases are of course particularly
interesting, not least because of the possibility of exploring these ω-modified systems also in
a quantal context, and in particular to test thereby the natural hunch that to the isochronous
character in the classical context of these Hamiltonian systems there correspond in the quantal
context an equi-spaced spectrum—at least when the isochronous region coincides with the
entire (natural) phase space (possibly up to the exclusion of some lower dimensional set), and
for some appropriate quantization scheme. In simple cases investigations of this kind have
indeed been performed, yielding nontrivial insights on the nature of quantization [2].

A significant development in this context has been the recent introduction [1] of a different
kind of trick, applicable to a rather broad class of Hamiltonians, that allows us to generate, from
a given time-independent Hamiltonian, an equally time-independent, ω-modified Hamiltonian
yielding isochronous equations of motion. This has opened the way to the investigation also
in the quantal context of these ω-modified Hamiltonians, and thereby to illuminate further the
relation among the isochronicity of classical motions and the (possibly equi-spaced) character
of the spectra of the corresponding quantal Hamiltonian systems. It has also provided the
main motivation for obtaining the results reported in the present paper, in which we confine
our consideration to isochronous Hamiltonians which are linear in the canonical momenta (of
course analogous results hold for isochronous Hamiltonians which are linear in the canonical
coordinates: indeed in the classical context the distinction among canonical momenta and
canonical coordinates is purely semantic, while in the quantal context it corresponds merely
to a Fourier transformation of the eigenfunctions).

In the following section 2 we introduce these Hamiltonian systems and we discuss their
classical behaviour. In section 3 we consider these systems in the quantal context and we
prove the main result of this paper, namely that for this particular class of Hamiltonians the
semiclassical quantization prescription is exact, so that to the isochronous character of their
classical dynamics there corresponds in the quantized context an equidistant spectrum; and
we show that this actually holds for a broad range of ordering prescriptions, including non-
symmetric ones. Examples illustrating these findings are presented in section 4, and some
final remarks in section 5.

2. Classical mechanics of isochronous Hamiltonians linear in the momenta

Let us consider the following Hamiltonian:

H(q;p) = a(q) · p ≡
N∑

n=1

an(q)pn, (2)
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to which there correspond the Hamiltonian equations of motion

q̇n = ∂H(q;p)

∂pn

= an(q), (3a)

ṗn = −∂H(q;p)

∂qn

= −
N∑

m=1

∂am(q)

∂qn

pm = −∂a(q)

∂qn

· p, (3b)

where the notation is, we trust, self-evident (in particular we hereafter assume indices such as
n,m to run from 1 to N, and denote N-vectors by underlined letters).

Remark 2.1. The linear character of the Hamiltonian (2) entails that the canonical coordinates
evolve according to a set of first-order ODEs, see (3a), which is not influenced at all by the
corresponding evolution, see (3b), of the canonical momenta. Hence this kind of dynamical
system should perhaps be called ‘Aristotelian’ (in contrast to ‘Newtonian’), inasmuch as the
velocities, rather than the accelerations, equal the ‘forces’ (namely, the quantities appearing
on the right-hand side of the equations of motion, see (3a)).

Remark 2.2. Adding to the Hamiltonian (2) a term independent of the canonical momenta,
so that it reads

H(q;p) = b(q) + a(q) · p, (4)

does not affect at all the dynamics in configuration space (see (3a)).

Remark 2.3. Adding to the Hamiltonian (2) a term independent of the canonical momenta of
the form a(q) · ∇r(q) so that it read

H(q;p) = a(q) · ∇r(q) + a(q) · p (5a)

amounts merely to redefining the momenta according to the rule

p �→ p + ∇r(q). (5b)

Note that this transformation, associated with q �→ q, is clearly canonical. There is therefore
some freedom in adding a momenta-independent term to the Hamiltonian without significantly
affecting the momenta dynamics, though it cannot be done in full generality without affecting
it.

Remark 2.4. Hamiltonians linear in the momenta are quite special, yet any Hamiltonian
system can in fact be reformulated as a Hamiltonian system linear in the momenta by doubling
the number of canonical variables. Indeed let Ȟ (q1, . . . , qN ;p1, . . . , pN) be a completely
general Hamiltonian, yielding the equations of motion

q̇n = ∂Ȟ

∂pn

, ṗn = −∂Ȟ

∂qn

, n = 1, . . . , N, (6)

and define now a new Hamiltonian H̃ (Q1, . . . ,Q2N ;P1, . . . , P2N) with double the number
of variables, as follows: introduce the 2N canonical variables Qν , ν = 1, . . . , 2N, via the
assignment

Qn = qn, QN+n = pn, n = 1, . . . , N; (7)
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call Pν the 2N canonical momenta conjugated to the 2N canonical variables Qν, ν =
1, . . . , 2N , and define the Hamiltonian H̃ (Q1, . . . ,Q2N ;P1, . . . , P2N) as follows:

H̃ (Q1, . . . ,Q2N ;P1, . . . , P2N) =
N∑

n=1

[
∂Ȟ (Q1, . . . ,QN ;QN+1, . . . ,Q2N)

∂Qn

PN+n

− ∂Ȟ (Q1, . . . ,QN ;QN+1, . . . ,Q2N ; )

∂QN+n

Pn

]
. (8)

It is then plain that the (first) 2N Hamiltonian equations yielded by this Hamiltonian
H̃ (Q1, . . . ,Q2N ;P1, . . . , P2N)—which is indeed linear in the momenta!—reproduce the
original Hamiltonian equations of motion (6).

The complete equivalence—regarding the time evolution of the N canonical coordinates
qn—among the two Hamiltonian formulations indicated in this remark 2.4 holds of course only
in the classical context; generally, it does not carry over to the quantum case, since the Poisson
brackets {qk, q̇k} vanish for H̃ but not for Ȟ , so that quantization will necessarily differ. It is
indeed well known (although not always emphasized when teaching quantum mechanics) that
even Hamiltonians yielding exactly the same classical dynamics in configuration space may
well yield different quantum dynamics (see for instance [4]).

Also relevant in this connection is the observation that the preceding remark 2.4 is merely
a special case of the following more general (if rather trivial)

Remark 2.5. The most general dynamical system in configuration space, being
characterized by the equations of motions (3a), is Hamiltonian, being indeed yielded by the
Hamiltonian (2).

In the following we limit our consideration to the case in which the dynamics defined
by (3a) is isochronous, that is, we assume there exists a set of initial conditions having full
dimensionality in phase space for which the orbits in configuration space are all completely
periodic (i.e., periodic in all degrees of freedom) with the same period T. Note however that it
is not a priori certain that the corresponding solutions of the Hamiltonian equations of motion
(3) are completely periodic in phase space (i.e., that also the time evolution of the canonical
momenta is isochronous, and with the same period): only if this is so, the corresponding orbits
shall close not only in the q coordinates, but simultaneously in the p coordinates as well.

The first result we now show is that such is, in fact, the case whenever, as we indeed
assume, the dynamics given by (3a) is completely periodic. To prove this we observe first
of all that the equations of motion (3b) are linear, hence we can consider separately the time
evolution of the components of the N-vector p parallel, respectively orthogonal, to the
N-vector a(q). The former coincides clearly (see (2)) with the Hamiltonian divided by the
length of the N-vector a(q) and it is therefore certainly periodic (since the Hamiltonian
is constant throughout the motion, and the vector a(q) is periodic inasmuch as q itself is
periodic: we assume of course that the N-vector function a(q) is univalent). To show that the
component of the N-vector p perpendicular to a(q) is also periodic, we introduce the scalar
function S(q) defined by the following PDE:

a(q) · ∂S(q)

∂q
≡

N∑
n=1

an(q)
∂S(q)

∂qn

= 0. (9)

This is in fact just the Hamilton–Jacobi equation corresponding to the Hamiltonian (2).
Note that this linear PDE is of first order, and can therefore be solved using the method
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of characteristics. It follows from the general theory of the Hamilton–Jacobi equation that
the characteristics are in fact determined by the classical equations of motion, i.e. by (3a).
However, we will present the relevant calculation in detail, as the Hamiltonian (2) is a singular
one, so that standard theory might not apply.

Let us consider any function S(q) having the property to be constant along the orbits q(t)

of (3a), that is

S[q(t)] = const. (10)

Since the orbits are by hypothesis all periodic, such functions exist, and they clearly solve (9).
We now ask how the components of the gradient of S[q(t)] vary with time. In component
notation one finds

d

dt

∂S[q(t)]

∂qn

=
N∑

m=1

am[q(t)]
∂2S[q(t)]

∂qn∂qm

(11a)

= −
N∑

m=1

∂am[q(t)]

∂qn

∂S[q(t)]

∂qm

, (11b)

where the first equality obtains via the equations of motion (3a) and the second by taking
the gradient of (9). We thus see that the gradient ∂S/∂q of S(q) satisfies the same evolution
equation as the momentum p (see (3b) and (11b)). Therefore, if the initial value of the
N-vector p of the momenta is perpendicular to (the initial value of ) a(q), it will evolve just as
the gradient of S and therefore return to its original value once the orbit has run through one
period in configuration space. Our first result is thus proven.

Let us end this section by also reporting the version of the Hamilton–Jacobi equation at a
fixed energy E:

a(q) · ∂SE(q)

∂q
≡

N∑
n=1

an(q)
∂SE(q)

∂qn

= E. (12)

Note that we denote its solution as SE(q).

3. Quantum mechanics

Standard quantization of the Hamiltonian (2) yields the operator

H = h̄

i

N∑
n=1

an(x)
∂

∂xn

, (13)

and correspondingly the stationary Schrödinger equation (at fixed energy E)

h̄

i
a(x) · ∂ψE(x)

∂x
≡ h̄

i

N∑
n=1

an(x)
∂ψE(x)

∂xn

= EψE(x). (14)

The notation is, we trust, self-evident; but let us emphasize that we ignore for the moment
ordering issues. In fact, the quantum Hamiltonian (13) is not even formally symmetric. We
shall later show that this does not greatly matter as regards our argument concerning the
equi-spaced character of the spectrum; it does, of course, matter when one actually computes
the corresponding eigenfunctions of this Hamiltonian (anyway in the examples discussed in
section 4 we will always symmetrize the Hamiltonian before quantizing it).

We now state in full the main result of this section.
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Theorem 1. Let the Hamiltonian H be defined as follows:

H = h̄

i

[
N∑

n=1

an(x)
∂

∂xn

+
u

2

N∑
n=1

(
∂an

∂xn

)]
, (15)

where an(x) gives rise to an isochronous system with period T throughout phase space, then
for arbitrary values of the parameter u the spectrum of (15) is given by

Ek = 2πh̄k

T
(16)

with k an integer.

Remark 3.1. Let us first comment on the significance of the parameter u. The case u = 1/2
arises from using the following (more general) quantization prescription in order to obtain a
symmetric Hamiltonian:

an(q)pn �→ h̄

2i

{
[an(x)]α

∂

∂xn

[an(x)]1−α + [an(x)]1−α ∂

∂xn

[an(x)]α
}

(17)

with α an arbitrary real constant in the interval 0 � α � 1/2 (for α = 0 this correspond
to the standard symmetrization prescription). It yields for the Hamiltonian operator (2) the
following result, independent of the value of α:

H = h̄

i

N∑
n=1

an(x)
∂

∂xn

+
h̄

2i

N∑
n=1

[
∂an

∂xn

]
, (18)

which corresponds to the quantum Hamiltonian (15) with u = 1/2. When u �= 1/2, on the
other hand, the Hamiltonian (15) is not symmetric. The theorem also holds in this case, but
the eigenvectors belonging to different eigenvalues are then not orthogonal in general.

Proof. We first consider the case in which u = 0. We make the following ansatz for the
wavefunction of the Schrödinger equation which is then given by (14):

ψE(x) = exp

[
iSE(x)

h̄

]
. (19)

Let us emphasize that this is not the point of departure of an approximation technique: we
show below that this formula is in fact exact. Indeed the insertion of this ansatz in (14) yields
the relation

a(x) · ∂SE(x)

∂x
≡

N∑
n=1

an(x)
∂SE(x)

∂xn

= E, (20)

which is just the Hamilton–Jacobi equation at fixed energy (see (12)). We may study this
along similar lines as (9). Consider a hypersurface � in configuration space of dimension
N − 1, on which we shall take all initial conditions �ξ0, where the superimposed arrow denotes
here vectors belonging to �, as opposed to configuration space vectors, which we continue to
denote by underlined letters. Let � be chosen so that it never crosses an orbit of (3a) more
than once. This is achieved as follows: if one considers a reference (closed) orbit starting
at q

0
= �ξ0, it is always possible to choose a small tube of orbits around it that has no self

intersections (note that at this stage we rely on the assumption that the system is isochronous
in this region of configuration space with a period T , see below). We may then choose � as
a section of this closed tube. We may now use the following coordinates for the tube: we
consider for any x the orbit of (3a) which passes through x and define �ξ0(x) as the (unique)
vector where this orbit crosses � and t (x) as the time required to reach x from �ξ0. The function
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t (x) increases by T (the period of the isochronous motion) when x returns to � after a full
round. The function t (x) is therefore not single valued along the orbit: it is rather defined
mod T since it increases by T after every turn along the orbit.

It is then clear that a function which only depends on �ξ0 is constant along the orbit.
As discussed in the preceding section, it therefore satisfies (9). It then follows via the first
Hamiltonian equation (3a) (of course with q replaced by x) and (20) that

dSE[x(t)]

dt
≡ dSE

dt
= E. (21)

To obtain a solution SE(x) of this equation it is then sufficient to set

SE(x) = σ(�ξ0) + Et(x). (22)

The function σ is arbitrary, but it depends only on the orbit (hence, as indicated by our
notation, only on the point �ξ0 where the orbit intersects the surface �), not on the coordinate
x along the orbit. The function SE(x) only depends on x via t (x) (see (22)). It thereby
inherits the multivaluedness of t (x) (as a function of x) if E �= 0: after each period along
the orbit it increases by ET , where T is the period common to all the orbits. Moreover, the
isochronous property entails that this lack of univalence is identical for all the orbits in the
tube: it corresponds for all of them to the same mod T definition of t (x) along the orbit,
with the same T for all the orbits in the tube. But this lack of univalence does not affect the
wavefunctions ψE(x), now given (see (19)) by the formula

ψE(x) = exp

{
i[σ(�ξ0) + Et(x)]

h̄

}
, (23)

provided the values of the energy E are quantized according to the rule (16) stated in the
theorem with k integer. The condition that the wavefunction be univalent is precisely the
requirement that characterizes the quantum spectrum, which is thus given just by this formula,
(16), with the requirement that k be integer. The quantum spectrum is thus indeed equi-spaced.
Note in particular that there is no zero-point energy: the systems considered are quantized just
according to the semiclassical (‘Bohr–Sommerfeld’) rule.

Let us now proceed to the general case, in which u �= 0. If we now use again the
ansatz (19) to study the corresponding Schrödinger equation, we obtain again an equation of
Hamilton–Jacobi type (at fixed energy):

N∑
n=1

an(x)
∂SE

∂xn

+
h̄

2i

N∑
n=1

∂an

∂xn

= E. (24)

This can again be solved by the method of characteristics, and the characteristics are again
given just by the solutions of (3a), since the additional term caused by the new ordering is
independent of p and therefore does not influence the dynamics in configuration space (see

remark 2.2). Hence if we introduce the coordinates (t, �ξ0) which we used above, we find
from (24)

dSE

dt
= E − h̄

2i

N∑
n=1

∂an[x(t)]

∂xn

, (25)

to be compared with (21). In order to understand that the additional term due to the ordering
prescription is irrelevant to quantization in this particular case, it is therefore sufficient to show
that ∫ T

0
dt

N∑
n=1

∂an[x(t)]

∂xn

= 0. (26)
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But from (3b) we infer that

N∑
n=1

∂an[x(t)]

∂xn

= d

dt
ln

{
∂[p(t)]

∂[p(0)]

}
, (27)

where we use the notation
∂(y)

∂(x)
≡ det

[
∂yn(x)

∂xm

]
(28)

to denote the Jacobian of the N coordinates y with respect to the N coordinates x. And from
(27) and the periodicity of the momenta pn(t) shown in the preceding section, there follows
that the integral in the left-hand side of (26) indeed vanishes. �

While this concludes our argument, up to the additional considerations given below, there
is one important caveat that must be issued here. We assumed in the above argument that
the choice of initial conditions for the trajectories could be made without any limitation.
However if, in the model under consideration, there are certain initial conditions that are
forbidden because they correspond to singularities of the forces, then a condition sufficient
(albeit possibly not necessary) for the validity of our conclusion is that the configuration space
region where such singular values occur be excluded from consideration—provided this can
be done in the quantum context. This fact will be illustrated in the examples provided in
the next section 4, and in fact it provides the main motivation for the detailed and extended
character of that section, in particular the selection and plurality of the examples presented
there.

Finally, let us consider a somewhat more general situation: indeed, it often happens
that the configuration space separates into various subsets 
j such that the solutions of the
classical equations of motion are completely periodic with different periods Tj in each 
j .
There may further exist an 
̄ in which the motion is multiply periodic, or not periodic at all.
The fundamental result for such systems can be phrased as follows: within each 
j , it is clear
that the whole construction described above can be carried out with no change except that
of replacing T by Tj . Thus to each 
j there corresponds an equidistant spectrum with level
spacing h/Tj . What we wish to show here is the following: that every function which has its
support in 
j can be generated as a linear combination of the eigenfunctions of H obtained
via the above construction. It is enough to show that every function inside a tube around
some reference periodic orbit can be so generated. Let us again introduce the transverse
hypersurface � and the coordinates �ξ(x) and t (x). The eigenfunctions of H are then of the
form

ψE(x) = �[�ξ(x)] exp

[
iEt(x)

h̄

]
, (29)

where �(�ξ) is an arbitrary function on � vanishing outside the tube. Since E takes as values
all integer multiples of h/Tj (and only these), it follows from Fourier analysis that all functions
of the form �[�ξ(x)] Pj [t (x)] with Pj (t) any periodic function of t having period Tj can be
obtained as linear combinations of the eigenfunctions ψE(x). But any function of x can be
expressed as

∞∑
�=0

��[�ξ(x)] P�[t (x)], (30)

hence the result is proved. The eigenfunctions obtained for 
j through our construction
therefore provide a complete eigenbasis for the Hilbert space L2(
j ) of square integrable
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functions with support in 
j . It therefore follows that one can perform the above construction
independently for all the sectors 
j and obtain the spectrum corresponding to the union of
all the 
j having isochronous behaviour. The situation in the region of configuration space

̄ (if it exists) remains, of course, unspecified, but we may state that the complications (both
of the classical motions and of the quantum spectrum associated with eigenfunctions having
their support in this region) do not affect that part of Hilbert space corresponding to functions
having instead their support outside 
̄.

4. Examples

In this section we illustrate our findings via some examples.

4.1. A very elementary example

We begin with a very elementary example to serve as a warm-up, and also to establish some
(standard) notation that will be used also in subsequent examples.

Consider the following Hamiltonian describing a rotator in the (horizontal) plane:

H(x, y;px, py) = ω(xpy − ypx) = ω[ẑ · (�r ∧ �p)] = ωpθ . (31)

Notation: ω is a positive constant; x and y are the Cartesian coordinates of the moving point
in the horizontal plane and px, py the corresponding canonical momenta; ẑ ≡ (0, 0, 1) is
the three-dimensional unit vector orthogonal to the horizontal plane and �r ≡ (x, y, 0), �p ≡
(px, py, 0) are correspondingly a convenient way to express the canonical coordinates in a
three-dimensional context (allowing a covariant description, see the second expression on the
right-hand side of (31), where the dot respectively the wedge symbols sandwiched among
two 3-vectors denote of course the scalar respectively vector products of these two 3-vectors);
finally r, θ are the standard circular coordinates in the plane,

x = r cos(θ), y = r sin(θ); r2 = x2 + y2, tan(θ) = y

x
, (32)

and pr, pθ the corresponding canonical momenta,

pr = px cos(θ) + py sin(θ), pθ = r[−px sin(θ) + py cos(θ)], (33a)

px = pr cos(θ) − pθ sin(θ)

r
, py = pr sin(θ) +

pθ cos(θ)

r
. (33b)

The equations of motion yielded by the Hamiltonian (31) are most simply expressed in
circular coordinates, indeed in self-evident notation they read

θ̇ = ω, ṙ = 0; ṗr = ṗθ = 0, (34)

hence their solution is

r(t) = r(0), (35a)

θ(t) = θ(0) + ωt, (35b)

describing circular motions in the plane all periodic with the same period T , see (1),
consistently with the formula

θ(t + T ) = θ(t) + 2π. (36)

The corresponding quantum problem, the formulation of which is again particularly
simple in circular coordinates, is characterized by the Hamiltonian operator

H = h̄ω

i

∂

∂θ
(37)
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(see the last expression on the right-hand side of (31), and the relations among the Cartesian and
circular coordinates (32) entailing that to the standard quantization prescription in Cartesian
coordinates, px �→ −h̄i∂/∂x, py �→ −h̄i∂/∂y there corresponds the analogous prescription
pr �→ −h̄i∂/∂r, pθ �→ −h̄i∂/∂θ). Hence the corresponding stationary Schrödinger equation
(at energy E) reads

h̄ω

i

∂ψE(r, θ)

∂θ
= EψE(r, θ). (38)

The solution of this equation is

ψE(r, θ) = ψ(r, θ0) exp

[
iE(θ − θ0)

h̄ω

]
, (39)

where ψ(r, ϑ0) is an arbitrary function of r, and the requirement that ψE(r, θ) be univalent
in the plane,

ψE(r, θ + 2π) = ψE(r, θ), (40)

entails that the energy E is restricted to belong to the following spectrum of the operator H:

Ek = h̄ωk (41)

with k integer. Note that each of this discrete energy eigenvalues is infinitely degenerate, due
to the arbitrariness of the r-dependence of the corresponding eigenfunction, see (39). This
arbitrariness corresponds to the fact that the radius of the circular orbit in the classical case is
neither fixed by the dynamics nor by the value of the energy of the motion, but merely by the
initial data.

Remark 4.1. The spectrum (41) has been yielded by the requirement that the eigenfunctions
of the Hamiltonian be univalent. The additional requirement that the eigenfunctions be
normalizable can be trivially met in this case, given the arbitrariness of their r-dependence.

Remark 4.2. This example raises no ordering problem.

The connection with the treatment given above (and with the corresponding notation) is
as follows: in Cartesian coordinates a is the two-vector

a(q) ≡ a(x, y) = (−ωy,ωx), (42a)

(see (2) and the equations that follow it) and in circular coordinates

a(q) ≡ a(r, θ) = (0, ω). (42b)

In the classical context, the Hamilton–Jacobi equation, see (9), reads, in circular coordinates,

ω
∂S(r, θ)

∂θ
= 0, (43a)

hence

S(r, θ) = S(r, θ0), (43b)

where θ0 is an arbitrarily assigned fixed value of θ and S(r, θ0) is to be set by the initial data.
This function is indeed constant (see (10)) along the (circular) trajectories, see (35). Likewise,
the Hamilton–Jacobi equation at fixed energy, see (12), reads

ω
∂SE(r, θ)

∂θ
= E, (44)

hence the function SE(r, θ) that satisfies this equation reads

SE(r, θ) = SE(r, θ0) +
E(θ − θ0)

ω
, (45)
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and via the Hamiltonian equations (34) one immediately verifies the validity of (21). Moreover
from the formulae of the classical trajectories (35) we see that this equation entails the relation

SE(r, θ) = σ(r) + Et, (46a)

hence

t (r, θ) = SE(r, θ) − σ(r)

E
(46b)

where we set

σ(r) = SE(r, θ0) +
E[θ(0) − θ0]

ω
. (46c)

The dropping of the label E from this function σ(r) is justified inasmuch as this is an essentially
arbitrary function.

Turning now to quantum mechanics we see that the ansatz (19) yields, via (45), precisely
the Schrödinger eigenfunction ψE(r, θ), see (39), which can also be written, via (46), in the
guise

ψE(r, θ) = ψ(r) exp

[
iEt(r, θ)

h̄

]
, (47)

with ψ(r) an essentially arbitrary function. This shows—congruently with the treatment given
above—that the quantization condition (41) is related with the periodicity of the classical
trajectories, entailing the relation

t (r, θ + 2π) = t (r, θ) + T = t (r, θ) +
2π

ω
, (48)

that is clearly congruent with (35b), (45), (46b), (36) and (1).

4.2. Another simple example

The next example we consider is characterized by the Hamiltonian (in circular coordinates)

H(r, θ;pr, pθ ) = a(r, θ)pθ , (49a)

a(r, θ) = ω

(
R

r

)
1 + 2

(
r
R

)
cos θ +

(
r
R

)2(
r
R

)
+ cos θ

(49b)

= ω

(
R

r

) [
1 +

(
r
R

)
exp(iθ)

][
1 +

(
r
R

)
exp(−iθ)

]
(

r
R

)
+ cos θ

, (49c)

entailing, in the classical context, the equations of motion

θ̇ = a(r, θ), ṙ = 0. (49d)

Here ω and R are two positive constants. Note that the right-hand side of the (first) equation
of motion (49d) becomes singular at r = 0, and moreover, if r � R, at cos θ = −r/R.

A standard computation yields, in the classical context, the following solution for the
initial-value problem for these equations of motion:

1 +
(

r
R

)
exp(−iθ)

1 +
(

r
R

)
exp(iθ)

= exp(−2iωt), (50)

where, without loss of generality, we set t = 0 when θ = 0 (and of course r = r(0)). Because
the right-hand side of this equation is clearly periodic with primitive period T/2 = π/ω, one
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might infer that the same conclusion is implied by this formula for the time evolution of θ(t).

This is, however, not the case. Indeed by solving this equation for exp(iθ) one gets

eiθ = R

2r

{
e2iωt − 1 +

[
e2iωt − ρ+

( r

R

)]1/2 [
e2iωt − ρ−

( r

R

)]1/2
}

, (51a)

with

ρ±(x) = 1 − 2x2 ± 2x(x2 − 1)1/2. (51b)

It is easily seen that the last formula implies that, for x = 1, ρ±(x) = −1; for x > 1, ρ±(x) are
both real and −1 < ρ+(x) < 0 hence |ρ+(x)| < 1 while ρ−(x) < −1 hence |ρ−(x)| > 1; for
x < 1, ρ±(x) are both complex and |ρ±(x)| = 1. There are therefore three different regimes,
corresponding to the following three assignments for r (that is of course fixed by the initial
condition, r = r(0), with the obvious exclusion of r(0) = 0):

(i) r = R, implying θ(t) = 2ωt, entailing a circular uniform motion periodic with primitive
period T/2 = π/ω.

(ii) r > R, entailing a circular non uniform motion periodic with primitive period T = 2π/ω.

(iii) r < R, entailing that, at some finite time ts (smaller than T/2 = π/ω) the trajectory hits
a singularity: it is indeed easily seen that, at that time ts , cos θ(ts) = −r/R, hence the
right-hand side of the (first) equation of motion (49d) blows up.

Let us now turn to the quantum case. The corresponding Hamiltonian operator reads

H = h̄

i

{
a(r, θ)

∂

∂θ
+

u

2

[
∂a(r, θ)

∂θ

]}
, (52)

where the second term in the right-hand side has been introduced so as to make this Hamiltonian
operator symmetrical: hence (see (18)) the parameter u should be assigned the value u = 1, but
we introduced it here as a free parameter in order to be able to trace the effect of the Hamiltonian
symmetrization (see below). Here of course a(r, θ) is defined by (49b) or equivalently (49c)
(one or the other of these two equivalent versions is more convenient to check some of the
following computations).

The corresponding stationary Schrödinger equation reads

h̄

i

{
a(r, θ)

∂

∂θ
+

u

2

[
∂a(r, θ)

∂θ

]}
ψE(r, θ) = EψE(r, θ), (53)

and it is easy to verify that the general solution of this linear PDE reads as follows (up to a
constant multiplicative factor, that can be adjusted to normalize this eigenfunction):

ψE(r, θ) = [a(r, θ)]−u/2f (r)[ϕ(r, θ)]k/2, (54a)

with a(r, θ) defined of course as above (see (49b) or (49c)), f (r) an arbitrary function,

ϕ(r, θ) = 1 +
(

r
R

)
exp(iθ)

1 +
(

r
R

)
exp(−iθ)

(54b)

and the ‘energy eigenvalue’ E related to the constant k by the formula

E = h̄ωk. (55)

Note that for real r and θ (as here considered) the (complex) function ϕ(r, θ) has unit
modulus, |ϕ(r, θ)| = 1 (hence it does not diverge), and that it is of course univalent in the
plane. Also note that the function [ϕ(r, θ)]k/2 is clearly also univalent in the plane if r < R

even if the constant k is not an integer, while if r > R it is univalent in the plane only if the
constant k is an integer.
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The requirement that the eigenfunction ψE(r, θ) with u = 1 (as implied by the
symmetrization of the Hamiltonian) be normalizable (i.e. that the integral over the entire
plane of its modulus squared be finite) clearly requires that the a priori arbitrary function
f (r) vanish for 0 � r � R and that it also vanish (faster than the inverse of r) as r → ∞.

Hence this function f (r) cannot vanish identically for R < r < ∞, and as a consequence the
requirement that the eigenfunction ψE(r, θ) be univalent in the plane entails that the constant
k must be an integer. Hence we conclude that the energy spectrum is equi-spaced, see (55).
Each eigenvalue is then infinitely degenerate, due to the arbitrariness of the function f (r),

which is only required to vanish for 0 � r � R and as r → ∞.
Note that this conclusion would not have been obtained if one had not required the

Hamiltonian to be symmetrized. Indeed if in the expression (54a) of the eigenfunction the
constant u were set to zero, one could well choose a set of eigenfunctions characterized by
a function f (r) vanishing for r � R, and then the requirement that the eigenfunction be
univalent would not impose that the constant k be integer. One would then be led to conclude
that the energy spectrum also has a continuous component. Note however that this does
not contradict our previous argument that the spectrum is independent of ordering issues,
and in particular that the same equi-spaced spectrum is obtained even for a non-symmetrized
Hamiltonian. Indeed this argument only applied to Hamiltonians yielding isochronous motions
in the entire phase space: if the Hamiltonian is not isochronous in the entire (natural) phase
space, then the result only holds in those parts of phase space for which the classical dynamics
is indeed isochronous. It is therefore clear that our results do not apply to that part of phase
space for which the classical trajectories run into a singularity at a finite time, since then
the system is clearly not isochronous. On the other hand, for wavefunctions localized in the
region r > R where the system does behave isochronously, the spectrum obtained is in fact
equi-spaced, independently of the ordering prescription, just as stated above.

4.3. A not-so-trivial example

The third example we consider is again a one-body problem in the plane and it is characterized
by the isochronous Hamiltonian (in circular coordinates)

H(r, θ;pr, pθ ) = −ω

γ

{[
1 −

( r

R

)−γ

sin(γ θ)

]
pθ +

( r

R

)−γ

cos(γ θ)rpr

}
, (56)

where ω and R are two arbitrary positive constants. In order that this Hamiltonian be univalent
in the entire plane the parameter γ must be integer: H is then periodic in θ with period 2π/γ

hence also with period 2π . In the case with real but not integer γ the problem could be
studied in the sector of the plane characterized by the restriction 0 � θ � 2π/γ , but such a
model, and its quantized version, are sufficiently interesting to warrant a separate treatment.
So hereafter we restrict consideration to integer values of the parameter γ. And we of course
also assume throughout that the number γ does not vanish, see (56); in fact, to streamline our
presentation we assume hereafter that

|γ | � 2, γ = ±2 or ±3 or ±4, . . . , (57)

to avoid the need to treat the somewhat special, and not particularly interesting, case with
|γ | = 1.

Let us deal firstly with the classical version of this problem. In this context the
(configuration space part of the) Hamiltonian equations of motion read

ṙ

r
= −ω

γ

( r

R

)−γ

cos(γ θ), (58a)
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θ̇ = −ω

γ

[
1 −

( r

R

)−γ

sin(γ θ)

]
, (58b)

and their solution is provided by the formula

r(t) exp[iθ(t)] = [r(0)] exp[iθ(0)] exp

(
− iωt

γ

)
·
{

1 −
[
r(0) exp iθ(0)

R

]−γ exp(iωt)− 1

i

}1/γ

(59a)
= Ri1/γ [1 − β exp(−iωt)]1/γ (59b)

= R

(
β

i

)1/γ

exp

(
− iωt

γ

) [
1 − exp(iωt)

β

]1/γ

. (59c)

(Before proceeding further, let us mention that the reader having difficulty to verify that this
formula (59) does indeed provide the solution to the initial-value problem for the Hamiltonian
equations of motion (58), and/or being baffled by the way we managed to find this solution,
and indeed to invent the isochronous Hamiltonian (56), will find an explanation in appendix A;
we relegate this explanation there not to interrupt the flow of the argument here).

The second and third versions of this formula (59), which are clearly equivalent to the
first provided

β = 1 + i

[
r(0)

R

]γ

exp[iγ θ(0)], (59d)

have been displayed to make it evident that this solution is periodic with primitive period T
(see (1)) whenever the initial data entail |β| < 1, and with primitive period γ T whenever the
initial data entail |β| > 1, thereby confirming the isochronous character of this model. The
two sets of initial data corresponding to |β| < 1 respectively |β| > 1 are separated by those
special initial data such that |β| = 1, for which the solution has a branch point occurring at
the (real) time ts defined mod T by the relation exp(iωts) = β, at which time r(t) diverges or
vanishes depending whether the integer γ is negative or positive. Let us call C the contour in
the plane defined by (initial) points such that |β| = 1. It is easily seen that it is characterized
by the equation( r0

R

)γ

= 2 sin(γ θ0), (60)

where we denote as r0, θ0 the circular coordinates along this curve (and as x0, y0 the
corresponding Cartesian coordinates, see below). For γ > 1 the curve C is described as
follows: it consists of γ copies of a basic unit which is the curve described by a point that
starts out horizontally and returns to the origin at an angle π/γ after making a closed path
inside the sector 0 � θ � π/γ . This basic unit, or lobe, is then rotated γ times by an angle
2π/γ to yield the full curve C. For γ < −1, the curve C will be the result of mapping the
curve for |γ |, which is as described above, by the transformation

r̃ = R2

r
. (61)

It therefore follows that for γ < −1 each lobe of C goes to infinity along the appropriate
angles, instead of going to zero. Figure 1 provides illustrations of both cases.

Let us now also discuss briefly the equilibria of this dynamical system, since this turns
out to be relevant to understand some aspects of the corresponding quantum system, see
below. From formulae (59) one easily sees that this system has |γ | equilibrium configurations
characterized by the following values of the circular coordinates (see (58)):

rj = R, θj = 2π

γ

(
j +

1

4

)
. (62)
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Figure 1. Level sets of χ(r, θ), see (65), for γ = 3 (upper figure) and γ = −3 (lower figure).
The curves correspond to the values 4, 2, 1, 0 (corresponding to C in the text), −0.2,−0.4 and
−0.6. These level curves correspond to orbits in configuration space. The division in four classes
is apparent: one in each lobe of C and another one surrounding either C or the origin. Note that C
is given as a continuous line, whereas the other curves are not.

We denote these equilibrium configurations by ηj . Here j is an integer in the interval
1 � j � |γ |. Hence, for γ > 1, each lobe of C contains exactly one of the equilibria defined
in (62). For γ < −1, the curve C and the equilibria arise from the corresponding values for
|γ | through the transformation given in (61). For γ < −1, the origin (r = 0) is an additional
equilibrium position, whereas, for γ > 1, infinity (r = ∞) is an (improper) equilibrium (note
that this is not true for γ = 1; this motivates our exclusion of this case, in order to simplify
our presentation). We note that since the system is two dimensional and has only periodic
orbits, all orbits necessarily rotate around one, or possibly several, equilibria, as illustrated in
figure 1.

It is not difficult to obtain explicit expressions for r(t) and θ(t) from the solution
formula (59), but we leave their display as an exercise for the diligent reader. To understand
the qualitative nature of the motions—which is quite different depending whether the modulus
of β is less or larger than unity—it is convenient (and sufficient) to consider two extremal
cases when the value of this quantity is either quite small or quite large. In the first case,
|β| 	 1, by expanding in β formula (59b) one easily gets (see (59d))

r(t) = R

[
1 − |β|

γ
cos(ϕ − ωt)

]
+ O(β2), (63a)

θ(t) = −|β|
γ

sin(ϕ − ωt) + O(β2); (63b)

in the second case, |β| 
 1, by expanding in 1/β formula (59c) one gets instead

r(t) = R|β|1/γ

[
1 − 1

γ |β| cos(ϕ − ωt)

]
+ O(β2), (64a)

θ(t) = −ω

γ
t ± π

γ
− 1

γ |β| sin(ϕ − ωt) + O(β−2) mod 2π. (64b)

The qualitative behaviour of the trajectories can now be inferred from these expressions. In
the case with positive γ , γ > 1, hence when the curve C is closed (see above), if |β| < 1 the
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motion takes place (with period T, see also above) around one of the finite equilibria ηj and
inside C, while if |β| > 1 the motion takes place (with period |γ | T , see also above) outside
C, with the moving particle in fact rotating around C and hence around all finite equilibria, or
(in some sense equivalently) around the equilibrium at infinity; and in the special case with
|β| = 1 the motion goes through the origin. If instead γ is negative, γ < −1, hence the curve
C is open (see above), if |β| < 1 the motion takes again place (with period T , see also above)
around one of the non-zero equilibria ηj , while if |β| > 1 the motion takes place (with period
|γ | T , see also above) moving around the origin, which, as stated above, is also an equilibrium
point in this case. As |β| → 1, the trajectories become larger and larger, independently of the
side of C on which the motion takes place. Note that the trajectories cannot in any case (except
for the special initial data such that |β| = 1) cross the curve C. Again, figure 1 illustrates what
happens.

We may therefore divide orbits into classes according to the equilibrium around which they
turn. As we have seen, they either turn around exactly one of the equilibrium configurations ηj

defined in (62) or they turn around the origin if γ < −1, and around C if γ > 1. We therefore
say an orbit is of class j if it orbits around the equilibrium configuration ηj , with 1 � j � |γ |,
and of class zero otherwise. We further define the integer-valued function κ(r, θ) as the class
of the orbit going through (r, θ). This function is defined everywhere except on C.

It also turns out to be convenient to introduce the function

χ(r, θ) =
( r

R

)γ [( r

R

)γ

− 2 sin(γ θ)
]
. (65)

It is readily found that the (classical) Poisson bracket of this function of the canonical
coordinates with the Hamiltonian (56) vanishes,

{H,χ} = ∂H(r, θ;pr, pθ )

∂pr

∂χ(r, θ)

∂r
+

∂H(r, θ;pr, pθ )

∂pθ

∂χ(r, θ)

∂θ
= 0, (66)

implying that χ(r, θ) is a conserved quantity (depending only on the canonical coordinates)
of our Hamiltonian system. The constancy of χ(r, θ) through the classical time evolution
implies that it can be used to identify the classical orbits. In fact, the two quantities χ(r, θ)

and κ(r, θ) are both conserved and their values characterize the orbit going through the point
(r, θ) uniquely. An illustration of these definitions is found in figure 1: there we show the
level curves of χ(r, θ) for γ = 3 and γ = −3. The level curves correspond to classical orbits
except for the level curve corresponding to the vanishing of χ(r, θ), which is the singular
curve C. The three lobes of C are readily identified, as are the four classes of orbits.

Finally, let us note that the solution formula (59) implies that the time taken to go along
an orbit from the initial values r(0), θ(0) to the values r, θ is given by the formula

T [r, θ; r(0), θ(0)] = i

ω
log

[
1 + i

(
r
R

)γ
exp(iγ θ)

β

]
(67a)

= i

ω
log

{
1 + i

(
r
R

)γ
exp(iγ θ)

1 + i
[

r(0)

R

]γ
exp[iγ θ(0)]

}
. (67b)

Note that here we have emphasized explicitly the dependence on the four variables
r, θ, r(0), θ(0), but these variables are not independent, since they must lie on the same
trajectory of the system. The condition for this to hold is most simply expressed by requiring
that T [r, θ; r(0), θ(0)] be a real quantity, namely that the argument of the logarithm have unit
modulus. Let us now consider the quantum version of this problem. First of all one should
symmetrize the Hamiltonian (56) (see (17) with α = 0), so that the corresponding quantum
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operator becomes (in circular coordinates)

H = −h̄ω

iγ

{[
1 −

( r

R

)−γ

sin(γ θ)

]
∂

∂θ
+

( r

R

)−γ

cos(γ θ)r
∂

∂r
+

2γ − 1

2

( r

R

)−γ

cos(γ θ)

}
,

(68)

and correspondingly the stationary Schrödinger equation (in circular coordinates) reads

−h̄ω

iγ

{[
1 −

( r

R

)−γ

sin(γ θ)

]
∂

∂θ
+

( r

R

)−γ

cos(γ θ)r
∂

∂r

+
2γ − 1

2

( r

R

)−γ

cos(γ θ)

}
ψE(r, θ) = EψE(r, θ). (69)

It is now easy to verify that the solution of this linear PDE reads as follows:

ψk(r, θ) = r(2γ−1)/2f [χ(r, θ), κ(r, θ)][ϕ(r, θ)]k/2, (70a)

ϕ(r, θ) = 1 − i
(

r
R

)γ
exp(−iγ θ)

1 + i
(

r
R

)γ
exp(iγ θ)

, (70b)

where χ(r, θ) is defined by (65) and the ‘energy eigenvalue’ E is related to the constant k by
the formula

E = Ek = h̄ωk. (71)

Note that the function ϕ(r, θ), see (70b), has unit modulus, |ϕ(r, θ)| = 1, while the constant
k, and the function f (χ, κ), are a priori arbitrary. It turns out, as we shall see later, that (70)
provides the general solution of the stationary Schrödinger equation (69). The normalization
can, of course, always be set by an appropriate choice of f .

We must now investigate the restrictions (if any) on the ‘quantum number’ k entailed by
the requirement that the eigenfunction (70) be univalent in the plane. The function χ(r, θ) is
clearly periodic in θ with period 2π/|γ |, hence a fortiori it is periodic with period 2π , hence
it is univalent in the plane; and so will be the function f [χ(r, θ), κ(r, θ)] provided f (χ, κ)

is univalent, as we hereafter assume. The function ϕ(r, θ) is clearly also univalent, but this
is not generally the case for the function [ϕ(r, θ)]k/2 that appears on the right-hand side of
(70a), since (for arbitrary k) it features branch points (as function of the complex variable
z = r exp(iθ)) at the equilibrium points ηj , see (62), as well as at the improper equilibrium
configurations (r = 0 respectively r = ∞ for γ < −1 respectively γ > 1). In fact, an easy
calculation shows that, as one goes around (clockwise or anticlockwise) one of the equilibrium
configurations ηj , see (62), the phase of ϕ(r, θ) advances by ±4π . On the other hand, if one
travels along a path that surrounds an improper equilibrium configuration, or equivalently that
surrounds all ηj , see (62), the phase of ϕ(r, θ) advances by ±4|γ |π .

To determine whether ψk(r, θ), see (70a), is univalent, we may clearly ignore the first
prefactor r(2γ−1)/2, which is certainly univalent. On the other hand, the second prefactor
f [χ(r, θ), κ(r, θ)] only depends on the orbit. For ψ(r, θ) to be univalent, it is therefore
necessary that, for every orbit on which this prefactor is non-vanishing, the phase advance
of ϕ(r, θ)k/2 be an integer multiple of 2π . As we have seen above, if the orbit is of class j ,
with j �= 0, the phase advance of ϕ(r, θ) is ±4π . Hence if there are orbits of type j, j �= 0,
such that f [χ(r, θ), κ(r, θ)] �= 0, then k must be restricted to be an integer. If, on the other
hand, all orbits on which f [χ(r, θ), κ(r, θ)] �= 0 are of class zero, then the phase advance of
ϕ(r, θ) is ±4|γ |π , so that k is then only restricted to an integer multiple of 1/γ, k = k̃/γ with
k̃ integer.
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This conclusion confirms (as of course it should) the validity of our result: as stated
earlier, in each isochronous region, the energy spectrum is equi-spaced, the eigenvalues
coinciding with all integer multiples of πh̄/Tj ≡ h/Tj , where Tj is the period in the region of
configuration space 
j . Here we have period T = 2π/ω (see (1)) whenever κ(r, θ) �= 0 and
period |γ |T otherwise. The above solution shows that the spectrum follows the same rule: for
functions whose support includes regions where κ(r, θ) �= 0, the spectrum is given by h̄ωk̃;
for functions localized exclusively in the region characterized by κ(r, θ) = 0, the spectrum is
given by h̄ωk̃/γ , where k̃ is of course, in both cases, an arbitrary integer.

Let us moreover analyse the eigenfunction (70) by identifying the classical significance
of each of its constituents. Firstly, let us consider the factor r(2γ−1)/2 on the right-hand side of
(70a). It is easy to see that it satisfies the PDE

Hr(2γ−1)/2 = 0, (72)

with the differential operator H given by (68). Clearly this factor in the eigenfunction ψk(r, θ)

takes care of the presence of the last term on the right-hand side of (68), associated with the
symmetrization of the Hamiltonian operator. Secondly, let us consider the functions χ(r, θ)

and κ(r, θ). As we have seen before, these are both classically conserved quantities and
serve to label the orbits. The prefactor f [χ(r, θ), κ(r, θ)] therefore plays the same role as the
prefactor ψ(r, θ0), see (39), in the elementary example treated in section 4.1. Finally, ϕ(r, θ)

is only characterized by its phase (since it has unit modulus) and plays the role of exp
(

iS
h̄

)
,

see (19).
Finally, at the risk of belabouring the issue (but the purpose of the examples is precisely to

display in complete detail the mechanism that underlies our main result), let us outline how the
results reported above can be arrived at by following the same steps as in the general reasoning
employed in section 3. To this end, we first need to evaluate—in the classical context—the
time required to reach a point (r, θ) from a given curve. We choose starting points on a set of
|γ | curves �j, each of them defined as the straight line that goes from the origin to infinity
through the j th equilibrium point, and study the wavefunctions generated by starting the orbits
on �j . Orbits of class zero intersect, of course, all the curves �j exactly once, whereas orbits
of class j > 0 intersect one �j twice and do not intersect any other �j ′ with j ′ �= j .

We must now determine the time needed to reach (r, θ) from �j . This is given by
T [r, θ; r(0), θj ], see (67b). But in fact there is only one r(0) (or possibly two, see above)
from which the trajectory will reach just the coordinates r, θ from �j : let us call it r(j)(r, θ).
It can be determined by requiring the argument of the logarithmic function on the right-hand
side of (67b) with θ0 = θj to be unity: since exp(iγ θj ) = i, it follows that∣∣∣∣∣1 −

(
r(j)

R

)γ
∣∣∣∣∣ =

∣∣∣1 + i
( r

R

)γ

exp(iγ θ)

∣∣∣ (73a)

entailing (
r(j)

R

)γ
[(

r(j)

R

)γ

− 2

]
=

( r

R

)γ [( r

R

)γ

− 2 sin(γ θ)
]

= χ(r, θ) (73b)

hence (
r(j)

R

)γ

= 1 ± [1 + χ(r, θ)]1/2. (73c)

One readily sees that the right-hand side, χ(r, θ), of (73b) is always larger than −sin2(γ θ),

hence the argument of the square root on the right-hand side of the last equation is certainly
nonnegative, hence both these two solutions, (73c), are real and at least on is positive; in
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fact, both are positive iff χ(r, θ) is negative. The first case corresponds to a classical orbit
of class zero. The second case corresponds to a classical orbit of class j with j �= 0. Note
incidentally that the above equations determine the initial radius r(j) from the values of r
and θ , but not the initial angle θj , or in other words, they do not determine around which
ηj the orbit going through (r, θ) is turning. This is obtained from more detailed geometrical
considerations, which are however unessential, since these questions can all be settled using
the |γ |-fold symmetry of the geometry of the problem.

We therefore now define the following function of r and θ only:

t (r, θ) = T [r, θ; r(j)(r, θ), θj ], (74)

see (67b). It follows immediately from the meaning of t (r, θ), and it can also be verified
algebraically (if need be), that this function satisfies the equation

d

dt
t[r(t), θ(t)] = 1 (75)

(when r(t) and θ(t) evolve according to the equations of motion (58)), and from this there
also follows, using again the equations of motion (58), the formula{[

1 −
( r

R

)−γ

sin(γ θ)

]
∂

∂θ
+

( r

R

)−γ

cos(γ θ)r
∂

∂r

}
t (r, θ) = 1. (76)

An important issue concerns the possible multivaluedness of T [r, θ; r(0), θ(0)] and hence
of t (r, θ). As is readily seen, (67b) is in fact a relation between exp(−iθ) and a univalent
function of r and θ (remembering that γ is an integer). For this reason, t (r, θ) has no further
multivaluedness than an additive constant equal to T times an integer (including, as we have
seen above, the case in which the change in t after a single round along a closed orbit is |γ | T

rather than T ).
We may reason similarly about r(j)(r, θ): it is clearly conserved by the dynamics, so that{[

1 −
( r

R

)−γ

sin(γ θ)

]
∂

∂θ
+

( r

R

)−γ

cos(γ θ)r
∂

∂r

}
r(j)(r, θ) = 0. (77)

Bringing all this together, and taking moreover into account the symmetrization of the
Hamiltonian, one is clearly led to the eigenfunction (70).

4.4. An interesting example

In this section we consider, as fourth and last example, an ‘Aristotelian’ three-body problem
that we deem interesting in view of its connection with a recent discussion of the transition (in a
classical context) from regular to irregular motions [3]. However here we restrict consideration
to the two-body case, which does not give rise to any such phenomenology (see below), and
our presentation is quite terse, amounting essentially to showing that this case is merely a
special case of that treated in the preceding section 4.3.

The three-body problem in question is characterized by the Hamiltonian [3]:

H(z, p) = −
3∑

n=1

[
iωznpn + gn

pn+1 − pn+2

zn+1 − zn+2

]
, (78)

hence by the equations of motion

żn = −iωzn +
gn+2

zn − zn+1
+

gn+1

zn − zn+2
, n = 1, . . . , 3, (79)

where the coordinates zn characterizing the motion are complex.
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Here we restrict consideration to the two-body case by setting g1 = g2 = 0, g3 = g.

Then the motion of the third particle (n = 3) is quite trivial (the elementary rotator, as treated
in section 4.1 both in the classical and the quantal contexts), and we can ignore it. We then
consider the motion of the other two ‘particles’, with labels 1 and 2, and we separate the
motion of their centre-of-mass (Z = (z1 + z2)/2), which consists again only of a rotation,
and is therefore also rather trivial both in the classical and quantum contexts (as described in
section 4.1). We therefore only focus on the relative motion of the two interacting particles,
as described by the relative coordinate z = z1 − z2 and momentum p = (p1 − p2)/2, and we
reinterpret motions in the complex z-plane as motions in a real plane, by replacing this complex
coordinate by the circular coordinates via the standard identification z(t) = r(t) exp[iθ(t)].
It is then a matter of trivial algebra—and of taking advantage of the standard transition from
a complex Hamiltonian problem to an equivalent real Hamiltonian problem, see for instance
[5]—to find out that our problem turns out to be characterized by the Hamiltonian

H(r, θ;pr, pθ ) = −ω

2

{[
1 −

(
R

r

)2

sin(2θ)

]
pθ +

(
R

r

)2

cos(2θ)rpr

}
, (80a)

where we set

g = ωR2

4
. (80b)

The final observation is that this Hamiltonian coincides with the special case with γ = 2 of
the Hamiltonian treated in the preceding section 4.3.

5. Outlook

As is generally the case, after our main finding has been internalized, it becomes rather obvious.
Indeed it originates from the fact that Hamiltonians that are linear in the momenta yield a
quantum-mechanical behaviour that is quite closely related to their classical behaviour. The
mathematical underpinning of this fact is that quantum mechanics with Hamiltonians linear in
the momenta leads to first-order PDEs which can then be solved along characteristics which
essentially coincide with the classical trajectories. This implies that these models do not
display, in the quantum mechanical context, the phenomenon of wavefunction diffusion which
in more general systems causes the quantum mechanical model to ‘feel’ always the entire
available phase space: it is in contrast possible to obtain eigenfunctions of these Hamiltonians
entirely localized on any (open) set of periodic orbits. It is for this reason that, in the quantum
context, equi-spaced spectra emerge even for Hamiltonian models which, in the classical
context, behave isochronously only in certain parts of their natural phase space, but possibly
in a very complicated manner (even chaotically) in other parts of their natural phase space.
For instance, in the example of section 4.3, we have seen how two spectra, both equi-spaced
but with a different spacing, could be associated with two different parts of configuration
space. Such attribution of wavefunctions to phase space cannot be performed rigorously in
the general case. Nevertheless, attempts have been made: thus Berry and Robnik [6] have
discussed (in the semiclassical limit) the spectra of mixed chaotic and integrable systems in
terms of a superposition of an integrable and a chaotic spectrum.

So Hamiltonians that are linear in the momenta are quite peculiar. Yet they may well
yield interesting time evolutions in the classical context, as shown by the example recently
introduced to illustrate a new paradigm for the transition from regular to irregular motions
[3]. This example provided an important motivation for the study reported in this paper. We
treated in the preceding section 4.4 this model, but only in the two-body case; the application
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of our findings to the three-body case is likely to be far from trivial, and it warrants additional
study.
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Appendix. Derivation of the Hamiltonian (56)

In this appendix we indicate how the Hamiltonian (56) is arrived at, and how the solution
(59) of its (classical) equations of motion is obtained. Here the treatment is restricted to the
classical case.

Our starting point is the Hamiltonian

H̃ (z;p) = ω

γ

[
−i +

( z

R

)−γ
]

zp, (A.1)

where we indicate with z the canonical variable and with p the corresponding canonical
momentum. Note that this is now a one-degree of freedom problem, but—as indicated by
the presence of the imaginary unit i—we are now working with complex numbers z, p (we
however assume both constants, ω and R, to be real, indeed for definiteness positive).

The (first) Hamiltonian equation of motion yielded by this model reads

ż = ω

γ

[
−i +

( z

R

)−γ
]

z. (A.2)

It is then easily seen that, by defining r(t) respectively θ(t) as the modulus respectively
the phase of the complex number z(t),

z(t) = r(t) exp[iθ(t)], (A.3)

the (complex) ODE (A.2) implies that r(t) and θ(t) evolve precisely according to the (real)
Hamiltonian equations (58). And indeed the relation among the (complex) Hamiltonian H̃

and the (real) Hamiltonian H, see (56), is, as can be easily verified,

H(x, y;px, py) = Re[H̃ (x + iy;px − ipy)], (A.4)

where x, y are the Cartesian coordinates associated with our point particle moving in the
(xy)-plane according to the real Hamiltonian H. These Cartesian coordinates and momenta
are of course related to the circular coordinates and momenta by the standard relations (32).

Hence, rather than solving (58) (apparently a nontrivial task), we can solve (A.2) and then
use (A.3). Solving (A.2) is no problem, but we now indicate an elegant (‘tricky’) way to do
it that provides also a hint of how the (isochronous) Hamiltonian (A.1) was invented to begin
with. Let

z(t) = exp(iλωt)ζ(τ ), τ = exp(iλt) − 1

iω
. (A.5)

This change of dependent and independent variables contains the number λ which we reserve
to choose at our convenience, see below. It clearly entails the following simple relation among
the initial values of the new and old dependent variables,

z(0) = ζ(0), (A.6)
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and moreover that, as can be easily verified, the new dependent variable ζ(τ ) satisfies the
following ODE (where of course appended primes denote differentiations with respect to the
new independent variable τ ):

ζ ′ = ω

γ
ζ

[
(γ λ + 1)i(1 + iωτ)−(λ+1)/λ −

(
ζ

R

)−γ

(1 + iωτ)(γ λ−1)/λ

]
. (A.7)

We now make the convenient assignment

λ = − 1

γ
, (A.8)

whereby this ODE, (A.7), takes the following simple (autonomous) form:

ζ ′ = −ω

γ
Rγ ζ 1−γ . (A.9)

Solving this ODE is now a really trivial task, and via (A.6) and (A.5) with (A.8) it yields
the solution (59).
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